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Huawei Pangu-Weather – ICON Comparison Maps (Bi et al., 2023)

With the current setup, a single 7-day forecast with Huawei Pangu-Weather consumes 14 Wh of energy. For a 7-day forecast with the ICON model,
the energy consumption amounts to approximately 30000 Wh. This simple calculation of course does not include the energy consumption required to
generate the training data and to train the model.
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• The dataset includes the 5th generation of ECMWF reanalysis (ERA5) data, which is publicly available.
• It comprises hourly reanalysis data from the year 1940 onwards.

• For our study, we used data from 1979 to 2017 for training purposes, 2019 data for validation, and 2018, 2020, and 2021 
data for testing to ensure a fair comparison with WeatherBench.

• The dataset contains a variety of surface and upper-air variables across 37 pressure levels.
• Specifically, we selected four surface variables (2m temperature, u- and v-components of 10m wind speed, mean sea-level 

pressure) and five upper-air variables (geopotential, specific humidity, temperature, u- and v-components of wind speed) at 
13 selected pressure levels (ranging from 50hPa to 1000hPa).

• Although the full dataset exceeds 2000 TB in size, our analysis used approximately 60 TB of data.

Huawei Pangu-Weather (Bi et al., 2023)

— Data and settings
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• The training phase involves each forecast model having approximately 64 million parameters.
• Each model is trained for 100 epochs over 16 days using 192 NVIDIA Tesla V100 GPUs, indicating that the models have 

not yet converged.
• During inference, each forecast takes about 1.4 seconds on a single V100 GPU.

• Inference can also be carried out on a CPU, albeit with a longer processing time.
• Executing a 7-day global forecast involves running the 24-hour model seven times, totalling less than 10 seconds.

• Faster inference facilitates easier ensemble forecasting.

Huawei Pangu-Weather (Bi et al., 2023)

— Computational costs
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Implementation of end-to-end lifecycle in AI projects (Alake, 2020), (Sato et al., 2019)

Problem definition Research
Data aggregation, 

mining and 
scraping

Data preparation, 
pre-processing 

and augmentation

Model building, 
implementation 

and 
experimentation

Model training and 
evaluation Model deployment Monitoring and 

observability

• Problem statement
• Ideal problem solution
• Understanding and 

insight into the problem
• Technical requirements

• Data structure and 
source

• Solution form
• Model architecture
• Algorithm research
• Hardware requirements

• Data gathering 
(diverse, unbiased and 
abundant)

• Data reformatting
• Data cleaning
• Data normalisation
• Data augmentation

• Usage of pre-trained 
models?

• Fine-tuning pre-trained 
models

• Training accuracy
• Validation accuracy
• Training loss
• Validation loss
• Underfitting or 

overfitting?

• UI interface to access 
model functionalities

• Continuous integration 
pipeline that enables 
model redeployment

• Model performance 
monitoring system

Model conversion 
(to appropriate 

format)
Evaluation

• Confusion matrix (error 
matrix)

• Precision-recall

• Refine and optimise the 
model

• Model conversion
• Mobile-optimised model

Metrics

C
od

e
M

od
el

D
at

a

Application 
code

Code and model 
in production

Production data

Training code

Training data

Candidate models

Test dataRaw data Labelled data

Chosen model Offline modelOffline model

Test code

Test data



HUAWEI | EUROPEAN RESEARCH CENTER

7

Implementation of end-to-end lifecycle in AI projects (Alake, 2020), (Sato et al., 2019)
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Implementation of end-to-end lifecycle in AI projects (Alake, 2020), (Sato et al., 2019)
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Implementation of end-to-end lifecycle in AI projects (Alake, 2020), (Sato et al., 2019)
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GPT assistant training pipeline (Karpathy, 2023)
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GPT assistant training pipeline (Karpathy, 2023)

Pretraining Supervised Finetuning Reward Modelling Reinforcement Learning
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LLMs model sizes over time (Information is Beautiful, 2024)
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The model size has exponentially increased, notably achieving approximately 
1.8 trillion parameters with the introduction of GPT-4. 
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• Updates are applied to all model weights.
• Models feature large weight matrices, e.g., 7 billion weights for a 7B model and 13 billion for a 13B model.

• Weight updates occur over multiple epochs.
• Extensive memory is required to store and update weights.

• Fine-tuning is restricted to high-capacity GPUs or GPU clusters due to these memory demands.

Full-parameter fine-tuning

Suppose hardware constraints limit our ability to test diverse strategies for enhancing the base model. In that case, Low-Rank 
Adaption (LoRA) offers two principal methods for solving this problem and can fine-tune LLMs at only a fraction of the cost.
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1. We monitor weight changes instead of directly updating them.
2. These weight changes are tracked in two distinct and smaller matrices, which are multiplied to create a product identical 

in size to the model's weight matrix.

How is Low-Rank Adaption (LoRA) different? (Hu et al., 2021)

+

Original model weights LoRA weight changes Fine-tuned model weights

=
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LoRA weight changes

1. We monitor weight changes instead of directly updating them.
2. These weight changes are tracked in two distinct and smaller matrices, which are multiplied to create a product identical 

in size to the model's weight matrix.

How is Low-Rank Adaption (LoRA) different? (Hu et al., 2021)

+

Original model weights Fine-tuned model weights

=

LoRA low-rank matrices

x



HUAWEI | EUROPEAN RESEARCH CENTER

18

LoRA weight changes

1. We monitor weight changes instead of directly updating them.
2. These weight changes are tracked in two distinct and smaller matrices, which are multiplied to create a product identical 

in size to the model's weight matrix.

How is Low-Rank Adaption (LoRA) different? (Hu et al., 2021)

+

Original model weights Fine-tuned model weights

=

LoRA low-rank matrices

xx

LoRA matrices, rank 2 Higher precision weight changes

=

The precision of the fine-tuning process can be enhanced by increasing the rank.
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Model size (in billion of parameters)

Rank 7B 13B 70B 180B

1 167k 228k 529k 849k

2 334k 456k 1M 2M

8 1M 2M 4M 7M

16 3M 4M 8M 14M

512 86M 117M 270M 434M

1,024 171M 233M 542M 869M

8,192 1.4B 1.8B 4.3B 7.0B

Number of trainable parameters

In reality, LLMs consist of multiple layers of varying sizes, contrary to the simplification of being a single layer.
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Model size (in billion of parameters)

Rank 7B 13B 70B 180B

1 0.00% 0.00% 0.00% 0.00%

2 0.01% 0.00% 0.00% 0.00%

8 0.02% 0.01% 0.01% 0.00%

16 0.04% 0.03% 0.01% 0.01%

512 1.22% 0.90% 0.39% 0.24%

1,024 2.45% 1.80% 0.77% 0.48%

8,192 19.58% 14.37% 6.19% 3.86%

Percent of total parameters

Percentages may be understated due to the multi-layered structure of models, but the core concept remains clear.

Involvement from higher-ranked individuals is particularly beneficial in teaching complex behaviours and addressing 
behaviours that contradict or fall outside the range of initial training.
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• This is basically LoRA 2.0 with “recoverable” quantisation for reduced memory 
usage.

• The scientific paper has two critical findings:
− Training all network layers is crucial for matching the performance of full-

parameter fine-tuning.

− The rank values between 8 and 256 are observed to have minimal impact on 
performance.

QLoRA (Dettmers et al., 2023)

— Efficient fine-tuning of quantised LLMs
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• Hallucination problem:
− Models frequently generate false information with high confidence, presenting a significant risk in scenarios that require strict accuracy. 

This represents the most prominent challenge in Generative AI.

• Attribution problem:
− More clarity is needed regarding why models produce specific outputs, which makes it difficult to trust or validate their responses.

• Staleness:
− Language models quickly become outdated, needing more information on recent events, diminishing their relevance and utility over

time.

• Revisions challenge:
− Models must comply with regulations (e.g., GDPR), which entails the ability to delete or revise data, a functionality that remains 

underdeveloped. The AI Act commits to monitoring across various dimensions of risk: fairness, autonomy, transparency, security, 
reliability, and data protection.

• Customisation issue:
− Adapting models to specific use cases or datasets is an on-going challenge, necessitating innovative solutions for effective 

personalisation and application in diverse environments. This includes strategies for integrating models with unique corporate data or 
adjusting outputs to align with the specific needs of different user groups.

Overcoming challenges of LLMs

A prevalent strategy currently being adopted involves integrating existing LLMs with external memory resources. Retrieval-
Augmented Generation (RAG) systems, which dynamically retrieve and incorporate external data into the decision-making 
process, are solving these challenges.
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General Purpose AI (GPAI) classification and key requirements for 
providers (European Parliament, 2024), (Pinto, 2024)

SYSTEMIC RISK GPAI MODELS

Foundation models trained with a
large amount of data and with
advanced complexity, capabilities, and
performance well above the average
can disseminate systemic risks along
the value chain.

ALL GPAI MODELS

Large models and systems capable of
competently performing a wide range
of distinctive tasks, such as generating
video, text, images, computer code, or
conversing.

• Transparency obligations before market placement, including:
– Drawing up technical documentation for downstream providers
– Complying with EU copyright law and disseminating detailed summaries about the 

content used in training
– Watermarking Al generated or manipulated content

• Complying with all requirements applicable to all GPAl models and systems
• Conducting model evaluations
• Assessing and mitigating systemic risks
• Conducting adversarial testing
• Reporting of serious incidents to the EU Commissions
• Ensuring sufficient cybersecurity protection
• Reporting on energy efficiency
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• Researchers have studied the comparison between Retrieval Augmented 
Generation (RAG) and fine-tuning methods on synthetic data.

− Their investigations reveal that both strategies significantly enhance the capability 
of AI to handle specialised information during question-answering tasks.

− RAG emerges as the leading methodology, outperforming fine-tuning in 
improving model responses to obscure queries.

− This does not eliminate fine-tuning's relevance but suggests RAG as a more 
efficient option for bolstering AI against niche topics.

− Fine-tuning is acknowledged for its depth in embedding knowledge, but it shares 
similar limitations with pre-training, particularly in learning about infrequent 
concepts.

Fine Tuning vs. Retrieval-Augmented Generation (RAG) (Soudani et al., 2024)
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Implementation of end-to-end lifecycle in AI projects (Alake, 2020), (Sato et al., 2019)
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Model deployment

Basic chatbot architecture
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Model deployment

Basic chatbot architecture (Simon, 2023)

— Example
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Large-language model

U
se

r

Document corpus

User prompt

…
System promptApplication 

code

Generated answer

“What is the latest trend
for solar investments in
China?” “As a helpful energy specialist,

please answer the question,
focusing on numerical data. Do
not invent facts. If you cannot
provide a factual answer, say
you do not know the answer.”

“According to a report by the International Energy
Agency (IEA), China was the world’s largest solar
market in 2020, with a total installed capacity of 160
GW. The report also states that China’s solar market
is expected to continue to grow, with a target of 250
GW of installed capacity by 2025. However, the report
does not provide specific information on the latest
trend for solar investment in China.”
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Model deployment

Retrieval-Augmented Generation (RAG) architecture
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Model deployment

Retrieval-Augmented Generation (RAG) architecture (Simon, 2023)

— Example
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• WorldEnergyInvestment2023.pdf
• WorldEnergyOutlook2023.pdf

“As a helpful energy specialist,
please answer the question,
focusing on numerical data. Do
not invent facts. If you cannot
provide a factual answer, say
you do not know the answer.

Question: {question}

Useful context to expand your
build-in knowledge: {context}”

“What is the latest trend
for solar investments in
China?”

“The latest trend for solar investment in China is that solar
PV capacity additions in China reached over 270 GW per
year before flattening in the STEPS scenario. This
represents a marked slowing of the rate of growth achieved
from 2023 to 2050 in the NZE scenario. China remains the
largest solar PV market, accounting for 45% of all capacity
additions in 2022”.
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Model deployment

Retrieval-Augmented Generation (RAG) architecture (Simon, 2023)

— Example
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Generated answer

• WorldEnergyInvestment2023.pdf
• WorldEnergyOutlook2023.pdf

“As a helpful energy specialist,
please answer the question,
focusing on numerical data. Do
not invent facts. If you cannot
provide a factual answer, say
you do not know the answer.

Question: {question}

Useful context to expand your
build-in knowledge: {context}”

“What is the latest trend
for solar investments in
China?”

“The latest trend for solar investment in China is that solar
PV capacity additions in China reached over 270 GW per
year before flattening in the STEPS scenario. This
represents a marked slowing of the rate of growth achieved
from 2023 to 2050 in the NZE scenario. China remains the
largest solar PV market, accounting for 45% of all capacity
additions in 2022”.

“What does STEPS mean”

“The STEPS scenario is a scenario that provides a sense of
the prevailing direction of energy system progression, based on
a detailed review of the current policy landscape. It explores
how energy systems evolve under current conditions and gives
a sense of the current direction of travel for the energy
economy. The STEPS is associated with a sector-by-sector
review of the policies and measures that are actually in place or
that have been announced; aspirational energy or climate
targets are not automatically assumed to be met. …”
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Model deployment

Retrieval-Augmented Generation (RAG) architecture
— Many questions ?!?
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How to scale?

How to learn?

How to optimise?

How to chunk?How to encode?

How and what to retrieve?

How to encode queries?

When to retrieve?

How to pre-process?

How to prompt?

How to pass context?

How to post-process?

How to verify?
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Model deployment

Retrieval-Augmented Generation (RAG) architecture
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Chunking strategy:
• Chunk size optimisation
• Character, recursive 

character or document 
specific

• Sliding window chunking

Embedding strategy:
• Which embedding 

algorithm or model?

(Muennighoff et al., 2023), 
(Hugging Face, 2024)

Document retriever:
• Metadata attachment
• Mixed retrieval
• Cognitive reviewer

Failure points:
• Missing content
• Missed the top-ranked documents
• Not in context – consolidation strategy limitations
• Not extracted
• Wrong format

User authentication:
• Access control
• Data security
• User privacy
• Legal compliance
• Accountability

Choice of LLM:
• Architecture
• Number of parameters
• Access
• Use-case
• Data privacy

Evaluate responses:
• Prompt evaluation
• RAG retrieval evaluation

• Relevance metrics
• Tasks-specific metrics
• Alignment metrics

Query strategy:
• Rewrite based on 

history
• Create subqueries or 

similar queries
• Query cost

Guardrails:
• Anonymization
• Restrict substrings, 

topics, code, language
• Detect prompt injection
• Detect toxicity
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• A single 7-day forecast consumes 14 Wh with Huawei Pangu-Weather compared to 30,000 Wh with the ICON model, 
illustrating a significant difference in energy efficiency.

• LoRA fine-tunes LLMs by monitoring and updating weight changes through smaller matrices, enhancing fine-tuning precision 
without direct weight modification.

• LLMs can generate false information with high confidence, presenting a significant risk in scenarios that require strict 
accuracy.

• Integrating existing LLMs with external memories through Retrieval-augmented Generation (RAG) systems is a leading 
solution to current challenges.

• RAG outshines fine-tuning in AI's handling of niche topics by significantly enhancing response precision to obscure queries.
• Despite RAG's superiority in handling niche topics, ongoing research and numerous open questions highlight the evolving 

nature of this AI methodology.

Closing remarks
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The information in this document may contain predictive statements, including, without limitation, statements regarding future financial and operating results, future product portfolio, new
technology, etc. A number of factors could cause actual results and developments to differ materially from those expressed or implied in the predictive statements. Therefore, such information is
provided for reference purposes only and constitutes neither an offer nor an acceptance. Huawei may change the information at any time without notice.

Advancing the Intelligent World
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